
ARx_Elements3.ag

ARx_Elements3.ag ii

COLLABORATORS

TITLE :

ARx_Elements3.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY August 3, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Elements3.ag iii

Contents

1 ARx_Elements3.ag 1

1.1 " . 1

1.2 ARexxGuide | Basic Elements | Expressions (4 of 5) | FUNCTIONS . 1

1.3 ... Expressions | Functions (1 of 5) | INTERNAL FUNCTIONS . 2

1.4 ... Expressions | Functions (2 of 5) | BUILT-IN FUNCTIONS . 3

1.5 ... Expressions | Functions (3 of 5) | LIBRARY FUNCTIONS . 4

1.6 ... Expressions | Functions (4 of 5) | EXTERNAL FUNCTIONS . 5

1.7 ... Expressions | Functions (5 of 5) | FUNCTION ARGUMENTS . 6

1.8 ARexxGuide | Basic Elements | Expressions (5 of 5) | OPERATIONS . 7

1.9 ARexxGuide | Expressions | NOTE (1 of 1) | CONDITIONALS . 7

1.10 ARexxGuide | Expressions | NOTE (1 of 1) | ACCIDENTAL COMMANDS . 8

1.11 ARexxGuide | Basic Elements (3 of 4) | CLAUSES . 10

1.12 ARexxGuide | Basic Elements | Clauses (1 of 5) | ASSIGNMENT . 10

1.13 ARexxGuide | Basic Elements | Clauses (2 of 5) | INSTRUCTIONS . 11

1.14 ARexxGuide | Basic Elements | Clauses (3 of 5) | COMMANDS . 12

1.15 ARexxGuide | Basic Elements | Clauses | Commands (1 of 5) | HOST . 13

1.16 ARexxGuide | Basic Elements | Clauses | Commands (2 of 5) | DEFAULT HOST 14

1.17 ARexxGuide | Basic Elements | Clauses | Commands (3 of 5) | INITIAL HOST 15

1.18 ARexxGuide | Basic Elements | Clauses | Commands (4 of 5) | COMMAND STRINGS 15

1.19 ARexxGuide | Basic Elements | Clauses | Commands (5 of 5) | EXAMPLE . 16

1.20 ARexxGuide | Basic Elements | Clauses (4 of 5) | LABELS . 17

1.21 ARexxGuide | Basic Elements | Clauses (5 of 5) | NULL clauses . 18

ARx_Elements3.ag 1 / 19

Chapter 1

ARx_Elements3.ag

1.1 "

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

Note: This is a subsidiary file to ARexxGuide.guide. We recommend
using that file as the entry point to this and other parts of the
full guide.

Copyright © 1993,1994 Robin Evans. All rights reserved.

1.2 ARexxGuide | Basic Elements | Expressions (4 of 5) | FUNCTIONS

Functions
~~~~~~~~~
Functions are sub-programs that perform a task and then return a value to
the calling environment. Functions can be used in either of two forms: The
symbol or word that identifies the function is either followed immediately
by an opening parenthesis or it is preceded by the keyword CALL .
(Parentheses may be used even with the CALL keyword but are not necessary.)

The definition of a function may come from any of several sources. Two of
those sources -- internal and external functions -- are easily created by
the ARexx user. The characteristics of each function source is explained
in the following sections:

Internal functions

Built-in functions

Library/Host functions

External functions
Whatever the source of a function, its calling sequence is the ←↩

same.



ARx_Elements3.ag 2 / 19

Depending on the function’s definition, it might accept a series of
values, called arguments, that are passed to the function. The arguments
are included after the function name and between the parentheses, if used.

Function arguments
When a function call is encountered within a program, ARexx ←↩

searches the
possible sources in the order in which they are listed above unless the
function name is enclosed in quotation marks. If the name quoted, ARexx
will ignore any internal functions with that name and begin its search for
the name at the built-in function list.

This allows a script to change the action of a function from one of the
three external sources. In the following example, an internal function
uses the same name as a function that might be available as a library
function. If the library is available, that function is called (by using
the name without the quotation marks). Otherwise, the internal function
uses a different method of retrieving the information.

Technique note: Get or set environment varialbes

Next: OPERATIONS | Prev: Variables | Contents: Expressions

1.3 ... Expressions | Functions (1 of 5) | INTERNAL FUNCTIONS

Functions defined within a script
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As varied and useful as ARexx

built-in functions
are, it is still often

necessary to build functions for specific tasks. ARexx allows programmers
to define code within a script as an ’internal function’. Such functions
work the same way as the functions described in the Function Reference .
They can be passed values through an

argument list
and can return a

value to the calling environment (must return a value, in fact, unless the
CALL instruction is used).

Internal functions are sections of code (called ’subroutines’) that begin
with a

label
clause. They are not otherwise restricted, but do exhibit

some unique characteristics.

One of those characteristics concerns the scope of variables -- the way
they are treated within the subroutine. By default, internal functions
share all variables with the main section of code: any variable defined
or changed in one part of the script is defined or altered in the other.
That, however, is often not desirable. Functions are used partly because
they are isolated code that can be used again in different scripts. Bugs
that are difficult to find can occur when a subroutine unexpectedly
changes the value of a variable in the calling environment.

ARx_Elements3.ag 3 / 19

The PROCEDURE instruction alters the default handling of variables:
When used at the beginning of a function definition, it causes the
subroutine to get a new set of variables that are not shared with the
calling environment. The new variable table prevents accidental changes to
a variable in the main program, even if a variable with the same name is
used in the subroutine.

Although variables have global scope within a script, several other values
inherited by subroutines have local scope by default. These settings can
be manipulated within the subroutine without affecting the settings of the
calling environment.

The settings established in the calling environment by ADDRESS ,
SIGNAL , OPTION , TRACE , NUMERIC , and the elapsed-timer are saved

when a function is called and restored when control returns to the calling
environment.

/**/
say address() >>> REXX
say digits() >>> 9
say trace() >>> N
call ChangeSettings
say address() >>> REXX
say digits() >>> 9
say trace() >>> N
exit

ChangeSettings:
address FOO
numeric digits 12
trace r
say address() >>> FOO
say digits() >>> 12
say trace() >>> R

return

Even though several settings are changed in the subroutine ChangeSettings,
the original values of the main section remain unchanged after the control
returns from the subroutine. Tracing output will be generated only for
four lines of the subroutine. After the RETURN, tracing will be halted.

More information: ARexx techniques

Next: BUILT-IN FUNCTIONS | Prev: Functions | Contents: Functions

1.4 ... Expressions | Functions (2 of 5) | BUILT-IN FUNCTIONS

Built-in functions
~~~~~~~~~~~~~~~~~~
Dozens of functions are available to an ARexx program as soon as it runs.
These are called ’built-in functions’. The Function Reference section of
this guide lists and explains each of the built-in functions.



ARx_Elements3.ag 4 / 19

With some significant exceptions (see Compatibility issues ) the built-in
functions of ARexx are also available in other implementations of the
language such the REXX available with the OS/2 operating system. As long
as only instructions and built-in functions are used, it is possible, with
some tweaking, to use a REXX program written for another system on the
Amiga.

Next: LIBRARY FUNCTIONS | Prev: Internal functions | Contents: Functions

1.5 ... Expressions | Functions (3 of 5) | LIBRARY FUNCTIONS

Function libraries
~~~~~~~~~~~~~~~~~~
Another source of ready-made functions is not as easily portable as
built-in functions. These are library or host functions that are supplied
either in libraries stored in the libs: directory or by host programs. To
access the functions they provide, host programs must be running or
libraries must be added to the system using the ADDLIB() function or the
RXLIB command utility.

One such set of library functions is contained in rexxsupport.library
which is included as part of ARexx distributions. Functions from that
library are also listed and explained in this guide’s Function Reference .

Dozens of function libraries have been written for ARexx -- many of them
available as public-domain or shareware files. Among the available
libraries are some that allow an ARexx program to harness the power of the
Amiga’s graphic user interface by using windows with buttons, gadgets, and
menus. ‘rexxarplib.library’ by Willy Langeveld is the classic of the GUI
function add-ons. Another is ‘rx_intui.library’ by Jeff Glatt. Both allow
an ARexx programmer to define screens and windows with buttons, text
gadgets, and other input facilities. Functions from rexxarplib library are
used in the file ARx_RarpInfoWin.rexx (part of the ARexxGuide distribution
archive) to define the optional clause information window in the
ARexxGuide help system

A full suite of requesters is available in any ARexx program using
‘rexxreqtools.library’ by Rafael D’Halleweyn, a file that is distributed
as part of, and uses, Nico François’s ReqTools.library. Functions from
that library are used for the requesters that show glossary entries in the
RQ version of ARexxGuide. The requesters are defined in the file

ARx_GlossaryPort.rexx, which is included in the rexx directory of the RQ
archive and in the Extras directory of the standard archive.

A new library first released in January, 1994 can simplify parsing of
command options. ‘RexxDosSupport.library’ by Hartmut Goebel is a small
library with powerful functions -- functions that access the operating
system’s parsing routines. Command line arguments can be read using the
same kind of slash-coded templates used to describe OS commands. (Type
‘LIST ?’ on the shell to see the template format.) Functions to set and
get environmental variables are included in this package, as they are in
rexxarplib.library. Unlike their REXX counterparts, the pattern-matching
functions in RexxDosSupport can ignore upper/lowercase distinctions, and
can use AmigaDOS wildcard characters to match a pattern in a string.

ARx_Elements3.ag 5 / 19

Those add-on functions are not explained in this edition of ARexxGuide,
but are highly recommended for the programmer who hopes to take full
advantage of ARexx. They should be available on most networks or BBSes
that support the Amiga.

Also see: ARexx Applications List

Some applications -- notably products from Gold Disk -- use a function
library rather than the more common command-host to add ARexx support to
the programs. There are some disadvantages and some significant advantages
to this method. Unlike

commands
, functions return values directly to the

ARexx script’s environment. That alone makes use of functions more elegant
than using commands. Unfortunately, the standard methods of addressing
multiple

hosts
are not available with this type of interface.

Also see ADDLIB()

Next: EXTERNAL FUNCTIONS | Prev: Built-in functions | Contents: Functions

1.6 ... Expressions | Functions (4 of 5) | EXTERNAL FUNCTIONS

Functions stored as ARexx files
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An ‘external function’ is an ARexx script or a program in another language
that returns a value of some sort and can therefore be called from any
script as a function. These programs are completely isolated from the
calling script and can communicate only through the argument string and
the return value.

To locate an external function, ARexx follows the same search path used
to find scripts launched with the RX command. The file extension is
therefore significant. A file named ‘rexx:Afunc.rexx’ or a file named
‘Afunc.rexx’ in the current directory can be invoked from a shell-launched
script with an expression similar to:

NewValue = Afunc(’An argument’)

If the function were used in a script launched as a macro, however, it
would often not be found with this name. The default extension for ARexx
files is changed in most non-shell environments. Because ‘.rexx’ is no
longer the default extension, it will not be added to the function name.
Instead, the application-specific extension would be used. In TurboText,
for instance, the default extension is ‘.ttx’ so a file named
‘rexx:Afunc.ttx’ would be invoked if the assignment above were used in a
macro started from that text editor. To assure that it will be accessible
from any environment, a full file name -- including the extension -- can
be used as a function name. If a file path is used in the function name,
it must be quoted to avoid misinterpretation of the characters ‘:’ and ‘/’.

The default extension in the current environment can be retrieved with the



ARx_Elements3.ag 6 / 19

instruction PARSE SOURCE which also indicates whether the executing
script was called as a function or as a command. That can be useful
information because the arguments passed to a command are treated
differently than those passed to a function: Commands receive a single
argument string in which commas have no special meaning. Functions, on
the other hand, recognize commas within an argument string and will split
the string at the position of commas into multiple strings assigned to
sequential

argument slots
.

Next: ARGUMENTS | Prev: Library functions | Contents: Functions

1.7 ... Expressions | Functions (5 of 5) | FUNCTION ARGUMENTS

Function arguments
~~~~~~~~~~~~~~~~~~
Although they can be used in a number of different ways, functions often
act on data supplied by the calling environment and then return a modified
version of that data. Information is passed to the function through
"arguments" that must follow a syntax determined by the function being
called.

Multiple arguments can be sent to a function. A comma is used to
separate each argument. It is sometimes necessary to include an argument
while leaving a prior argument slot blank. That can be done by using two
commas:

Ports = show(’L’,,’0a’x)

The second argument is omitted in the example above, but its place is
indicated by use of a comma.

The syntax of each built-in function is explained in this guide’s
Function reference . Although functions often include optional arguments

that may be omitted, an error will result if an argument required by a

built-in
or
library
function is missing:

+++ Error 17 in line 1: Wrong number of arguments

Error 17 would, for instance, be generated by ‘Foo = left(5)’ since the
function requires two arguments.

Although variables in ARexx use a natural typing that does not
distinguish between types of data, functions often require a certain
datatype. An error results if a built-in or library function is sent the
wrong datatype as an argument:

+++ Error 18 in line 1: Invalid argument to function

ARx_Elements3.ag 7 / 19

The second argument to LEFT() , for instance, must be an expression that
results in a number. If it isn’t, error 18 will be generated.

Internal functions
might also require arguments of a certain type,

determined by the subroutine that defines the function. ARexx will not
generate either of the above errors for an internal function because it
has no way to know what is required. The program should include code to
check arguments to assure that they are the proper type of data.

Multiple templates can be used with the PARSE ARG instruction to
retrieve each of the arguments sent to an internal function or the ARG()
function can be used.

Next: Functions | Prev: External functions | Contents: Functions

1.8 ARexxGuide | Basic Elements | Expressions (5 of 5) | OPERATIONS

Operations
~~~~~~~~~~
An expression is often built up from at least two other elements of the
language or from the results of other subexpressions, with the terms tied
together by an operator. ‘3 + 5’, for example, is a simple expression
comprising two constant symbols tied together by the addition operator. It
gives a result of ’8’.

An operator is the glue that binds the terms of an expression together and
operates on them in some way to produce a (usually different) result.

The operators can be divided into four basic groups:
Concatenation
Arithmetic
Comparative
Logical

Most of them are dyadic operators, which means they are placed between a
pair of terms. A few prefix operators are also supported. They are placed
immediately to the left of a term that is thereby modified.

Next: Expressions | Prev: Functions | Contents: Expressions

1.9 ARexxGuide | Expressions | NOTE (1 of 1) | CONDITIONALS

Conditional (True/False) expressions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A conditional is an expression that results in a value of either 1 (true)
or 0 (false). Conditional expressions (which might also be called ‘logical
expressions’) and the instructions that use them account for much of the
apparent intelligence (or lack of it) in a computer program. When used
with the instructions IF or SELECT , conditionals allow different tasks

ARx_Elements3.ag 8 / 19

to be performed under different conditions. Conditional expressions are
often used in variations of the DO instruction to control the number of
times a section of code is repeated.

The two simplest conditional expressions in ARexx are:

1
0

An instruction like ‘if 1 then <action>’ is valid in ARexx since ’1’ is
a valid conditional. Such a statement would be meaningless, though,
because it would always do the same thing.

When variables are used as simple conditionals, however, even a simple
conditional like ‘DoSomething = 1; if DoSomething the <action>’ is useful.
[DoSomething] can be set once and can then control actions in several
places in the script.

Comparative operations are a common form of conditional since they allow
two values (or two conditions) to be compared and return a value of either
TRUE or FALSE. The logical operators allow for a type of arithmetic with
TRUE/FALSE values.

ARexx also includes a rich set of functions that can be used directly as
conditionals:

/**/
pull Input
if abbrev(Input, ’Y’) then

say ’You said "Yes"’

Because it returns a Boolean value , ABBREV() can be used directly in
any instruction calling for a conditional. The OPEN() function, which is
the basis of all file I/O in ARexx, also returns a TRUE/FALSE value
indicating the success of the requested operation, making it useful as a
conditional.

Several other functions, like SHOW() and DATATYPE() include options
that make it possible to use them as conditional expressions.

Next, Prev, & Contents: EXPRESSIONS

1.10 ARexxGuide | Expressions | NOTE (1 of 1) | ACCIDENTAL COMMANDS

Avoiding accidental commands
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expressions are usually linked with other elements of the language to form
an

instruction
or
assignment clause
-- a statement that can be

executed by the ARexx interpreter . If an expression is used without
other language elements, it is treated as a

command



ARx_Elements3.ag 9 / 19

clause. The result
will be sent to the

current host
to be run in that environment.

A common error in ARexx is to use an expression (especially a function
call) without the other elements that would make it a valid instruction or
assignment, thus turning its result into an unintentional command for the
host.

The following program fragment would generate an error in AmigaDOS:

/* Error-generating expression */
ADDRESS COMMAND
OPEN(TFILE, ’t:tempfile’, ’W’)

AmigaDOS would generate this error:

Unknown command 1

ARexx itself would probably chime in with this:

1 *-* OPEN(TFile,’t:tempfile’,’W’);
+++ Command returned 20

ARexx opened the file, just as it was expected to do, and the function
OPEN() sent back a return value of ‘1’ to indicate the success of the

operation, but since the expression -- the function call -- was entered by
itself on a line, ARexx considered it to be a command clause and therefore
submitted the return value, ‘1’, to AmigaDOS. It is fortunate that
AmigaDOS does not have a command named ‘1’ because if it did, it would
have run that command. Instead, AmigaDOS reported the error and sent a
return code of ’20’ back to ARexx.

To avoid such errors, expressions must be a part of an instruction or an
assignment clause. Either of the following alternatives would be
acceptable:

/* the expression is used in an assignment clause */
foo = OPEN(TFile,’t:tempfile’,’W’);

/* the expression is used in an instruction */
if OPEN(TFile,’t:tempfile’,’W’) then;

/* ... */

The CALL instruction can used when the value returned by a function is
unimportant (although the return value can still be retrieved in the
RESULT variable):

CALL CLOSE TFile

Also see Error codes

Next, Prev, and Contents: EXPRESSIONS.



ARx_Elements3.ag 10 / 19

1.11 ARexxGuide | Basic Elements (3 of 4) | CLAUSES

Clauses -- the working statements of the language
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If tokens are the atoms of ARexx, then clauses form its ever-changing
table of elements. A clause is the smallest language unit that can be
executed as a statement.

ARexx recognizes five types of clauses:

Assignment

Instruction

Command

Label

Null
Each clause in ARexx ends with the semicolon token , but since ←↩

ARexx adds
one automatically at the end of each line and in several other situations,
it is rarely necessary for the programmer to type the semicolon.

Next: Basic elements | Prev: Expressions | Contents: Basic elements

1.12 ARexxGuide | Basic Elements | Clauses (1 of 5) | ASSIGNMENT

Assignment clause
~~~~~~~~~~~~~~~~~
The ‘=’ token does double-duty in ARexx, serving both as a comparative
operator and as the indicator of an assignment clause in which a value is
assigned to a variable .

An assignment clause takes this form:

<symbol> = <expression>;

<symbol> can be any of the three types of variable symbols . It becomes a
placeholder for the value of <expression>, which may be any type of value
-- numeric or text, or any combination of the two.

<symbol> can be written in uppercase or lowercase letters or a mixture of
the two. The mixture can even change within the same program. ARexx always
translates the symbol into uppercase for its internal symbol table.

Example:
/* When a symbol is uninitialized, its value is its name */
/* translated to uppercase */

say foo >>> FOO

/* Assign a literal string to the variable [foo] */



ARx_Elements3.ag 11 / 19

foo = ’Molloy, your region is vast’
say foo >>> Molloy, your region is vast

/* There’s no distinction in ARexx between a variable */
/* that represents a numeric value and one that */
/* represents a string */

foo = ’Flooey’ /* holds a string value */
say Foo >>> Flooey
foo = 5 /* now it holds a numeric value */
say FOO + 8 >>> 13

Also see: Basic elements: Variables

Next: INSTRUCTIONS | Prev: Clauses | Contents: Clauses

1.13 ARexxGuide | Basic Elements | Clauses (2 of 5) | INSTRUCTIONS

Instruction clause
~~~~~~~~~~~~~~~~~~
Instructions are the basic control mechanism for ARexx scripts. An
instruction may include several clauses, but always begins with a REXX
keyword which must be the first token in the initial clause. Each

instruction has a unique form, its syntax, which is explained in a major
section of this guide: Instruction reference .

Some instructions -- notably DO , IF , and SELECT -- are composed of
several distinct clauses and work in concert with other matched keywords
(like END , THEN , and WHEN).

The instruction keyword must be the first symbol in a clause and must be
entered as a literal symbol since ARexx will not make a substitution for a
variable that might have the value of a keyword.

The symbols used as keywords in ARexx are not reserved except within the
narrow range of the instruction within which the keyword is used. Although
the practice will usually lead to unnecessary confusion, it is valid in
most situations to use keyword names as variables. The following fragment
will not produce an error:

/* no error */
Now = date()
Then = ’01 Apr 69’
SAY Now ’&’ Then >>> 09 May 1993 & 01 Apr 69

The following fragment, however, will produce an error since the keyword
‘then’ is reserved within the range of the entire IF instruction:

/* invalid use of sub-keyword */
Now = date()
Then = ’01 Apr 69’
IF Now > Then +++ Error 41 in line 4: Invalid expression
THEN

SAY Now ’&’ Then

In some of the examples included in this guide, and in the syntax diagrams

ARx_Elements3.ag 12 / 19

in the reference section, the keyword of an instruction is entered in
uppercase letters. That is done only for the sake of clarity: A keyword
may be entered in any case, or in a mixture of upper- and lowercase.

More information:
Avoiding accidental commands from expressions

Next: COMMANDS | Prev: Assignments | Contents: Clauses

1.14 ARexxGuide | Basic Elements | Clauses (3 of 5) | COMMANDS

Command clause
~~~~~~~~~~~~~~
Because the language can be extended with command clauses, ARexx is able
to serve as the macro language for different programs or issue AmigaDOS
commands. Because commands within a single ARexx script can be directed to
different hosts, several programs can interact with one another through
ARexx.

A command is defined in ARexx not by what it is, but by what it is not: A
command is an expression that does not meet any of the other rules for
clauses. It is, in other words, a statement that isn’t an

assignment
,

isn’t an
instruction

, isn’t a
label

, and isn’t a
null
clause.

The negative definition is necessary because ARexx makes no attempt to
determine whether the expression is a valid command for the environment
that will receive it. ARexx has no way to know which commands will be
understood and which ones will generate an error, so it will submit to the
current host anything it can’t otherwise make sense of.

More information:
Avoiding accidental commands

The outside environment to which commands are submitted is called ←↩
the

‘host’. It can be changed with the ADDRESS instruction. The following
nodes explain hosts and commands in more detail:

Command host: what is it?

The default host

Determining the initial host

Entering commands in a script

Example script



ARx_Elements3.ag 13 / 19

When a command is issued in a script, ARexx will wait until the ←↩
command

sets its return code before execution continues.

Also see: Keyboard macros a tutorial

Next: LABELS | Prev: Instructions | Contents: Clauses

1.15 ARexxGuide | Basic Elements | Clauses | Commands (1 of 5) | HOST

Command host
~~~~~~~~~~~~
When the interpreter encounters a command, it is sent as a text string
to an external environment, which may then do something with the string.
The environment that receives the command is called the host.

The host might be AmigaDOS, a text editor, a drawing program, an image
processing program, a page-layout program, a database manager, a terminal
program. It can be nearly any application that runs on the Amiga.

ARexx itself cannot force a program to accept commands and cannot
determine the nature of the commands that will be acceptable to the host.
The developer of an application must open the public message port to which
ARexx will send commands and must make some provisions in the application
to deal with the commands sent by ARexx.

The host is referred to within ARexx by the name of the public message
port to which commands will be sent. A command ‘rx "say show(’P’,,’0a’x)’
can be used from a CLI to display a list of available message ports.

Message ports are components of the operating system that are widely used
for other purposes, so many of the listed ports will not be valid hosts
for ARexx commands. (Sending a command to a port that isn’t meant to
receive it will sometimes cause a system crash.)

The documentation for each program that serves as an ARexx command host
should include information about naming conventions for the port or ports
opened by the program as well as information about the commands that can
be sent to the port.

The ADDRESS instruction changes the host to which commands will be sent.
The ADDRESS() function returns the name of the host that is the current
target of commands. Commands sent to hosts should return a value of some
sort to ARexx. The interpreter will assign values to either or both of two
special_variables:

RC is assigned a numeric code indicating success or failure of a
command.

RESULT is assigned a string or numeric value returned by the
external environment. This value is available, however, only when
the instruction OPTIONS RESULTS is issued prior to the command.

Technique note: Read result of AmigaDOS command

ARx_Elements3.ag 14 / 19

Compatibility_issues:
The ANSI committee that is working on a formal definition of the
REXX language, avoids making extensions to the language, but has
made an exception in the case of ADDRESS.

The committee will probably introduce new features to the ADDRESS
instruction that will make it easier to retrieve the output of
commands.

The extensions will allow the output of a command to be redirected
either to a file stream or to a stem variable. The format would be
something like this:

ADDRESS <environment> [’<command>’] WITH OUTPUT STREAM PF.OUTPUT

ADDRESS <environment> [’<command>’] WITH OUTPUT STEM PF

If <command> is not included, the redirection would be persistent
for all commands issued to the new environment.

Next: DEFAULT HOST | Prev: COMMAND | Contents: COMMAND

1.16 ARexxGuide | Basic Elements | Clauses | Commands (2 of 5) | DEFAULT HOST

A script’s default host
~~~~~~~~~~~~~~~~~~~~~~~
Each ARexx script inherits a default host to which commands will be sent
until the host is changed with the ADDRESS instruction. When a script is
launched with the RX command utility, the initial address for commands
is a port called REXX. Most application programs that accept ARexx macros
will instruct ARexx to set the initial host to the address of the program
that launched the macro. A macro started from TurboText, for instance,
might have an initial host address of ’TURBOTEXT1’.

Toggling between hosts
~~~~~~~~~~~~~~~~~~~~~~
ARexx maintains two addresses: the current host and the previous host.
When a script begins, the current host is the same as the default host.
The previous host when a program begins is usually COMMAND -- the
operating system host that will execute any AmigaDOS command. When the
host is changed with the ADDRESS instruction, the environment that
received commands before the instruction was issued becomes the previous
host. The toggle form of the ADDRESS instruction will shift between the
current and previous hosts.

The REXX host understands one type of command: it will launch other ARexx
programs. When a command is sent to the REXX port, the ARexx resident
process handles it by looking for a program that matches the name of the
first word in the command. ARexx looks for the program in the current
directory and then in the REXX: directory. In each directory, it looks
first for the exact name as entered and then for a the specified name with
the extension ’.rexx’ added to the name. The script that sent the command
will pause until the second script is finished. Other text included with

ARx_Elements3.ag 15 / 19

the command is treated as a command-line argument and can be retrieved
with the ARG instruction or ARG() function in the called script.

AREXX port
~~~~~~~~~~
A second port, called ‘AREXX’, is available to ARexx scripts. It acts like
the REXX port except that it will launch ARexx scripts without causing the
calling script to pause. This is called ‘asynchronous’ operation and is
particularly useful when a script will interact with the calling script
through message ports established with the OPENPORT() function.

Next: INITIAL HOST | Prev: HOST | Contents: COMMAND

1.17 ARexxGuide | Basic Elements | Clauses | Commands (3 of 5) | INITIAL HOST

Determining the initial host
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The initial host for a program can be determined in either of two ways.
Since the ADDRESS() function returns the name of the current host, it
can be used at the beginning of a script to record the initial environment:

PortOfCall = address()

The instruction PARSE SOURCE SrcStr will record in the variable [SrcStr]
information about the way the current script was called. The last word in
the string is the name of the initial host for the program. It can be
retrieved with these instructions:

PARSE SOURCE SrcStr
PortOfCall = word(SrcStr, words(SrcStr))

The filename used to invoke the current script is included in the string
provided by PARSE SOURCE. Since the name might include embedded spaces,
the WORD() function, which won’t be fooled by extra words in the string,
will reliably grab the host name from the end of the source string.

Some applications programs include a command that will return the names of
ports opened by that program. In TurboText, for instance, the command
’GetPort <Document Name>’ will send back as a RESULT the name of the
port for the window that contains <Document Name>.

Next: COMMAND STRINGS | Prev: Default host | Contents: Command

1.18 ARexxGuide | Basic Elements | Clauses | Commands (4 of 5) | COMMAND
STRINGS

Entering a command in a script
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Commands are entered as strings that are sent to the host. The string
may be made up of any expressions , which are evaluated by the
interpreter before the command is sent to the host. Any part of the

command that is not meant to be evaluated should be enclosed in quotation



ARx_Elements3.ag 16 / 19

marks. The punctuation is not strictly necessary (most commands will be
sent to the host even if they aren’t quoted), but is highly recommended
for these reasons:

-- To avoid conflict between an ARexx keyword and the same word used
as a command to the external environment.

-- To prevent ARexx from misinterpreting characters like the ’:’ and
’/’ used in Amiga file names.

-- To speed up execution of the script since ARexx will not attempt to
evaluate the quoted expression.

An example of a keyword conflict is provided by versions of the Amiga OS
prior to 2.1 which included a command ’SAY’ that caused the computer to
speak a phrase. In ARexx, ’SAY’ is also a keyword that causes a string to
be output on the shell. How can a program distinguish between the two
distinct meanings? Quoting the command makes it apparent that it is a
command:

/**/
ADDRESS COMMAND

/* ARexx recognizes SAY as a keyword so treats this as **
** an instruction */

SAY ’Molloy, your region is vast.’

/* Because SAY is quoted, it the whole line becomes an **
** expression (since a string token is considered an **
** expression). ARexx won’t interpret such an expression as **
** a possible instruction and will therefore send the **
** entire string to the

current host
, AmigaDOS, which **

** will speak the phrase. */
’say "Molloy, your region is vast"’

Next: EXAMPLE | Prev: Initial host | Contents: Command

1.19 ARexxGuide | Basic Elements | Clauses | Commands (5 of 5) | EXAMPLE

A macro: Using commands
~~~~~~~~~~~~~~~~~~~~~~~
The following macro program for the TurboText text editor provides an
example of how commands work. Notice that the assignment clauses and
IF/THEN control structures are pure ARexx. A few ARexx functions --
ADDRESS() , GETCLIP() , and SETCLIP() -- are used as well. Statements

like ’RequestBool’ and ’SetBookmark’ are unfamiliar, though, because they
are TurboText commands rather than ARexx instructions.

/* $VER: 1.1 SetBkMrk.TTX (12.12.91; 05.18.93) */
/** by Robin Evans

** Sets the next available Bookmark to the current location.

** Indicates bookmark number in title bar

ARx_Elements3.ag 17 / 19

**/
options results /* necessary to get info back from TTX */
PoC = address()
LastMark = getclip(Poc’CurMark’)
if LastMark == ’’ then

LastMark = 0
else
do

if LastMark = 10 then
do

’RequestBool "All bookmarks used." " Replace Bookmark 1?"’
if result == ’NO’ then exit
else LastMark = 0

end
end
CurMark = LastMark + 1
call setclip(PoC’CurMark’, CurMark)
’SetBookmark’ CurMark
’SetStatusBar Bookmark’ CurMark ’set.’

This little program was made to be run from within TurboText as a macro.
An ADDRESS instruction is not used because the default host will be the
TurboText task that called the macro. All of the commands will be sent to
that task.

Next: Command | Prev: Command strings | Contents: Command

1.20 ARexxGuide | Basic Elements | Clauses (4 of 5) | LABELS

Label clause
~~~~~~~~~~~~
A simple symbol followed by a colon ‘:’ creates a label that begins the
definition of a subroutine . The code following the label can then become
the target of CALL or SIGNAL instructions. If they return a value they
can be used as

internal functions
.

Label clauses can be stacked to give the same section of code multiple
names. The following construction is valid:

Syntax:
Error:
Novalue:
Emergency:

<program code>

Because of the stacked labels, the same section of code would be invoked
by each of the following instructions:

SIGNAL on syntax
SIGNAL on error
SIGNAL on novalue
CALL Emergency



ARx_Elements3.ag 18 / 19

ARexx will supply an implied semicolon after a label, so the symbol and
its colon will be considered a clause even if something else follows on
the same line, as often happens when PROCEDURE and EXPOSE are used
with a subroutine. Although those keywords could be used on a separate
line, they are often included on the same line as the label in this manner:

MakeWidget: PROCEDURE EXPOSE Foo

The implied semicolon makes that a valid construction.

If a label clause is encountered in the normal flow of a program (that is,
outside of the shift caused by a SIGNAL or CALL instruction or by a
function call), then the label clause will be ignored and the program will
continue with the first clause following the label. (PROCEDURE cannot be
used after such a label, however.) If an EXIT or RETURN instruction is
not placed in the flow prior to the area where subroutines are defined,
then the program will continue through and try to execute the subroutine
statements.

Although it would be considered bad form in many circumstances, it is
possible to use CALL or -- more often -- SIGNAL to direct program flow
back to an earlier point in a program by placing a label just prior to
that point. This technique provides one of the only ways to recover from
an error condition that has been trapped by a SIGNAL instruction, but
should be unnecessary under normal conditions since the various
control structures available in ARexx usually offer a better way to

control the flow of a program.

Next: NULL clauses | Prev: Commands | Contents: Clauses

1.21 ARexxGuide | Basic Elements | Clauses (5 of 5) | NULL clauses

Null clause
~~~~~~~~~~~
Null clauses are program elements that don’t do anything. The ARexx
programmer usually doesn’t need to know that they are specifically defined
in the language, but the interpreter must pay attention to them so that
they can be removed from the program before it is executed.

Null clauses are blank lines, comment tokens, or lines on which the only
character used is the semicolon. ARexx ignores these clauses except to
trace the beginning of a comment to its closing ‘*/’ characters.

Because it recognizes them as an element of the language, ARexx allows and
encourages the use of blank lines to enhance the readability of program
code. Similarly, the language ignores the blank characters (tabs or
spaces) that precede a clause so that code may be indented to make it
easier to follow the flow of a program.

A null clause cannot, however, be used in place of an expression. That
means that it is not enough to use the following construction that is
common in C:

If <condition>;

ARx_Elements3.ag 19 / 19

then <instruction>;
else;

;

The final semicolon is ignored and will not be interpreted (as it would be
in C) to mean that no operation should be performed when the ELSE
condition is met. Instead, ARexx would bind the following clause to the
ELSE keyword. The NOP keyword is provided for instances when it is

necessary to state explicitly that no operation is to be performed.

Next: Clauses | Prev: Labels | Contents: Clauses

	ARx_Elements3.ag
	"
	ARexxGuide | Basic Elements | Expressions (4 of 5) | FUNCTIONS
	... Expressions | Functions (1 of 5) | INTERNAL FUNCTIONS
	... Expressions | Functions (2 of 5) | BUILT-IN FUNCTIONS
	... Expressions | Functions (3 of 5) | LIBRARY FUNCTIONS
	... Expressions | Functions (4 of 5) | EXTERNAL FUNCTIONS
	... Expressions | Functions (5 of 5) | FUNCTION ARGUMENTS
	ARexxGuide | Basic Elements | Expressions (5 of 5) | OPERATIONS
	ARexxGuide | Expressions | NOTE (1 of 1) | CONDITIONALS
	ARexxGuide | Expressions | NOTE (1 of 1) | ACCIDENTAL COMMANDS
	ARexxGuide | Basic Elements (3 of 4) | CLAUSES
	ARexxGuide | Basic Elements | Clauses (1 of 5) | ASSIGNMENT
	ARexxGuide | Basic Elements | Clauses (2 of 5) | INSTRUCTIONS
	ARexxGuide | Basic Elements | Clauses (3 of 5) | COMMANDS
	ARexxGuide | Basic Elements | Clauses | Commands (1 of 5) | HOST
	ARexxGuide | Basic Elements | Clauses | Commands (2 of 5) | DEFAULT HOST
	ARexxGuide | Basic Elements | Clauses | Commands (3 of 5) | INITIAL HOST
	ARexxGuide | Basic Elements | Clauses | Commands (4 of 5) | COMMAND STRINGS
	ARexxGuide | Basic Elements | Clauses | Commands (5 of 5) | EXAMPLE
	ARexxGuide | Basic Elements | Clauses (4 of 5) | LABELS
	ARexxGuide | Basic Elements | Clauses (5 of 5) | NULL clauses

